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Self-organized criticality can emerge even if the range of interactions is infinite
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We have investigated a model of tree growth in order to show that self-organized critic0§) can
emerge even if perturbations due to long-range interactions are propagating throughout the whole system. The
interaction potential is assumed to be a podef of the distancel measured along the tree between branch
extremities. A transition occurs fer,=1 according to simulation results between SQC~(«;) and non-SOC
(a<a.) regimes. A theoretical treatment supports the idea that the transition occurs when the expsnent
equivalent to the fractal dimensidhfS of the backbonédskeleton of the tree[S1063-651X98)09101-9

PACS numbg(s): 05.40:+j, 61.43.Hv, 68.35.Rh

[. INTRODUCTION each branching event affects tligs of other leaves when
these are separated from the branching point by a distance
Self-organized criticalitfSOQ has received much atten- d;; less than a parametkihaving a finite value. The distance
tion since it was proposed to be a paradigm for the descripdij betweeni and ] is defined as the minimum number of
tion of a wide variety of dynamical procesggd. The SOC segments needed to connect both leaves. The above

behavior is the tendency for large systems composed 0<§_election-branching perturbation process is repeated a de-

many interacting agents to evolve spontaneously towards gr%dagﬁrggilgro fatllwrigist‘j. critical state is characterized by a set
critical state. In the latter, the system exhibits long-range 9 y

. ) . . > of critical exponentderived from a power-law behavior of
power-law correlations in space and time while the interac-

. - relevant properties as a function of scale, time, or internal
tions between agents usually take place over a finite rangs: rametef — f, . It has been demonstratd that the finite

like nea_rest-neighboring columns of sand grains in t_he _Bakk—value tree model does not belong to the SOC universality
Tang-WiesenfeldBTW) model[1-3] The SOC behavior is  ¢|as5 of extremal dynamics models such as invasion perco-
in contrast with classical phase transitions for which the finq4ion, Bs, sandpiles, and BTW. Indeed, the relationships
tuning of an external fielda temperature-like parametés  petween critical exponents that have been defif8idfor
needed for a critical situation. Moreover, a critical state withextremal dynamics models do not hold for SOC tree models
self-organization is characterized by an intermittence of7]. This arises from the fact that the SOC tree model gen-
“avalanches” [4]. Much experimental and numerical evi- erates its own fractal structure of dimensifn in which
dence of SOC has been found: cellular automata, sandpilegerturbations are propagating along the backb@skeleton
earthquakes, vortex motion in type-II high-superconduct-  of dimensionD?=D;—1 [9], in contrast to the majority of
ors, invasion percolation, fractal growth, and interface pin-SOC models which are defined on a regular and static lattice.
ning [4]. Another original feature of the SOC tree model is that the
Recently, we have extended the Bak-Snep(@8) model  values of the critical exponents depend on the rdngéthe

[5] of SOC to the growth of trees through successive branchinteractions between agerextremitie$ [6].
ing eventq 6]. A random scalar numbédt between zero and It is natural to expect some SOC behavior when the
one is associated with each leaf of a tree. Physically, thisigents have a finite range of “interactions” between them.
number is like a bound state in a potential or the degree ofhis is certainly true in the Bak-Sneppen co-evolution lattice
stability of the extremity. At each growth step, a branchingmodel since, in this case, some regularity is introduced into
event is supposed to take place on the leaf having the lowesfie evolution process and only a limited amount of elements
f; value, i.e., the least stable. The model is thus driven byre changing at each step. In the case of an infinite range of
so-calledextremal dynamicsThe branching event leads to interaction, SOC is expected to disappear if there is no prob-
two offsprings, each receiving a new random potential valueability condition for the way an agent is changing state. This
Interactions are introduced in the system by assuming thd$ the case of the random-neighbor version of the Bak-

Sneppen model which is recognized to be noncritjda).

The destruction of SOC in the case of random-neighbor

* Author to whom correspondence should be addressed. Electrongandpiles has also been reporf&il

address: vandewal@gw.unipc.ulg.ac.be For the SOC tree models, whém-o, all agents are in-
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teracting. Then alf;’s are modified at each time step and the 0.06
SOC behavior is expected to be completely destrdyléd

No pattern should be expected, since there is no memor 0.05 -
effect at all, and all time steps look like the first one. If there

is no order at first, there will never be any order later on. For 0.04

a tree, wherk— o, the tree growth reduces to a simple Eden

growth [10] as with a Cayley tree. Notice that such a situa- 5 0.03
tion is not artificial since very long-range interactions as well =

as a treelikghierarchical structupegrowth are relevant fea- 002 -
tures for turbulent economic systems, where evidence ¢ '
power laws as in SOC have been repoiftéd]. Long-range 001 L

interactions are also relevant for the Internet growth for
which 1f noise has been recently reported as Wed].

Thus, it is of fundamental, theoretical, and practical inter- 0.00
est to investigate whether or not there are conditions for con
served SOC behaviaven if all agents are interactingn
order to do so, we have investigated the case of a(Bé)&:} FIG. 1. Distributionn(f ) of f;’s values for three different val-
whenk—, i.e., when all agents are interacting. Ingredientses ofo: 0.8, 1.0, and 1.2.
for the emergence of SOC are found, though for a somewhat
surprisingly simple condition.

0

Ill. NUMERICAL RESULTS

Starting from a single root with any value of the initial
potential, the distributiom(f ) of potential values for the
The present study considers the tree model Withe and ~ /eaves is seen to self-organize always towards a steady state.
with leaf interactions given by a power law of the distance toTypical distributionsn(f ) of the f;'s after t=10" growth
the branching node. When a branching event occurs on a le&f€Ps are shown in Fig. 1. Three different situations are illus-
i having the minimum potential valug, the process leads trated:a=0.8,a=1.0, anda=1.2. The shape of the distri-
to two new offspring. The “potential” of each offspringis ~ bution n(f ) is seen to change drastically at=1. Below

supposed to be correlated to the value of the parent by thec. the distributionn(f ) seems to be a continuous and in-
law creasing function between 0 and 1. Abowg, n(f ) is a

steplike distribution with the great majority of ttigs above
a gap or threshold.. This means that all branching events
have taken place through leaves having f.. The thresh-
old is close tof .~0.5 for a>«a.. The formation of such a
wheree,, is a random number in the intervid, — 1,1 f;]. gapf. in then(f ) distribution fora> « leads naturally to
Moreover, due to the infinite range of the interactions, thethe definition of avalanchd®$] as a causally connected se-
potential f; for all leavesj of the tree is assumed to be quence of activity belowf.. It should be noted that the
updated, following threshold is of course not well defined numerically fer
~ a. due to the necessary finiteness of the simulated trees.
€ For « close toa,, it has thus been difficult to measure pre-
fie—fi+ d—'a (2 cisely the distribution of avalanches in order to demonstrate
ij a hypothetical SOGor change ih behavior. However, evi-
dence of avalanche dynamics as well as criticality can be
where¢; is a random number belonging to the interyf]  given about other features of the tree growth as seen below.
—1,1-f;]. The f; values are constrained to remain in the Figure 2 presents the two-dimensional projection of two
interval [0,1]. The exponenty is the key parameter that is trees fora=0.5 andae=2.0, respectively. These trees are
going to control the propagation of the potential landscapéenade up of 4000 branching nodes; each one is represented
perturbations along the tree. Fer=0, one recovers the tree- by a dot. The vertical axis represents the distance from the
SOC model withk=0o and for which the SOC behavior is root while the horizontal axis is arbitrary. The grey levels
destroyed. Forr— 0, the model reduces to the invasion per- represent different steps of the growth. The skeleton of each
colation rule of a Cayley tree that exhibits SOC. tree is fora< . and the trees are found to be dense objects
The Fisher algorithnh14], for which each branching node close to Cayley trees. Aboug., the trees are fractal objects,
is labeled with reference to the label of its ancestor, has beethus reflecting a SOC behavior driving the tree growth itself,
used in order to speed up simulations. The CPU computings in the case of finite range of interactiof&7]. For «
time increases as a power pfvith an exponent close to 3. > «,, the fractal dimension of the trees has been found to be
This value is in contrast to an exponent close to 2 for theclose toD;=2, a result that is different from the tree-SOC
previous tree-SOC modgT]. Within a reasonable computa- model of Ref.[6] for which, e.g.,D;=1.92+0.04 fork=2
tion time, it has been difficult to grow trees with more than[7].
10* branching points. Nevertheless, our results of “small”  Figure 3 presents a semilog plot of the evolution of the
trees will be seen to be relevant for the present quest of SO@rgest distancd,,,, from the leaf top to the root of the tree.
behavior. The a=0.5 ande=2.0 cases are illustrated. Both cases can

Il. MODEL

fm<—fi+6m, (1)
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FIG. 2. The two-dimensional projection of two trees fa} «
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FIG. 4. Log-log plot of the distributiom(r) of distancesr mea-
sured along the tree between successive growth events. Three dif-
ferent values ofx are illustrated: 0.8, 1.0, and 1.2.

For a=0.5,d,5 has clearly a logarithmic evolution express-
ing the nonfractality of the tree far<<a.. For «=2.0,d,x
increases as a power bfvith an exponent, expressing that
the tree is fractal with an exponebt;=2. Thus, the inves-
tigation of the tree geometry clearly supports the idea of a
transition between non-SOC and SOC regimea at

We have also investigated the jumps of the branching
activity on the tree, i.e., théshortest distancer measured
along the tree between two consecutive growth events. Fig-

=0.5 and(c) «=2.0, respectively. These trees are made up of 400Q; e 4 presents in a log-log plot the distributior) between

branching nodes, each represented by a dot. The grey levels reprgyccessive branching leaves. Three different situations are
sent different steps of the growth. The vertical axis represents Rlustrated: «=0.8 a=1.0. anda=1.2. Below a... the
. .0, U, =t (o]

measure of the distance from the root while the horizontal axis ha

an arbitrary scale. The skeleto(ty and(d), i.e., the backbone, of
both treega) and(c) are also illustrated.

be described by successive jumps dyf,, and periods of
stasis. The jumps seen in tlg,,, time evolution are ava-

tistribution of jumps presents a cut off and is smoothly
curved in a log-log plot. Moreover, a “bump” appears near
the cut off. This bump comes from the fact that the distance
between two successive growth events has roughly the size
of the tree for a randorfEden-like tree growth. This bump
disappears foe> a.. Above a.=1, then(r) distribution is

lanches at the “top” of the tree, while during the periods of a power lawn(r)~r~" with an exponentr=1.9+0.1. Such
stasis the activity takes place in the “inner parts” of the tree.a power-law behavior is a characteristic of SOC processes
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FIG. 3. Log-log plot of the time evolution of the length,, of
the tree. Two different values of are illustrated for concise-
ness: 0.5 and 2.0.

[8].

IV. DISCUSSION

Let us consider theoretical arguments next. It has been
recalled that whemr— o, the model reduces to the invasion
percolation problem of a Cayley tree or to a critical branch-
ing proces$13] for whichf.=3, D=2, andw=2 are exact
values. When is finite, a mean-field treatment of the tree-
growth problem is possible by distinguishiagtive andin-
activeleaves. Let us define activeleafi of the tree as one
with f;<f., while aninactiveone is forf,>f.. In a mean-
field approximation, the modulation of the perturbation re-
sults from an average over all leaves such that the evolution
equations read

Nacl(t+1):2chact(t)+p(fcr<da>)Ninacl(t)’ )

and
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Ninacl(t+ 1)= 2(1_ fc)Nacl(t) + [1_ p(fc 1<da>)]Ninacl(t)l
4

wherep(f.,(d?)) is the probability that an inactive leaf be-
comes active at a distandel®) from the latest branching
event. Assuming that has a simple fornp, /(d®), one finds
that the number of active leaves,.; presents a stationary
solution forp, /(d*)—0. In this case, the gap exists ahd
=3. Since the probability(d) of finding two points sepa-
rated from a lengthd is proportional to the powed ™ P°r
whereD; is the dimension of the embedding spdttee tree
herein, one has

1Dy
(d*) = fo n(d)sd=t(@~ D D/Dy, (5)

Thus, the formation of a gap. is only possible for &
—D;+1)>0 such that a transition takes place at

a.=D¢—1. (6)

BRIEF REPORTS

57

since the perturbations are clearly mediating through the tree
skeleton. The fact that the tree skeleton may play an impor-
tant role during the growth is also related to the screening of
extremities leading to fractal trees as discussed in Ré&i.

V. CONCLUSION

In summary, we have attempted to solve the dilemma
concerning SOC conditions when the interaction range is
infinite. We have investigated a simple model of tree growth
for which the range of interactions between agents behaves
like a power lawd ™ “ of the distance separating the interact-
ing agents. We have found that a transition between non-
SOC and SOC growth regimes occurs at a critical valye
=1. This value is found to be the fractal dimension of the
tree skeletoD?=D;—1, i.e., the dimension of the structure
trough in which interactions are mediated.

Note added in proofAn interesting paper to consider with
respect to the above work is that of Canfia8], where it is
shown that the critical properties of one-dimensional Ising

This mean-field result is in quite good agreement with themodels with long range interactions that decay like“1de-

numerical results presented abo®x~2 anda.~1). It is

pend much ony, in particular for Ka<?2.

conjectured that the relationship should apply to fractal trees

grown under other branching conditiofj.

It should be pointed out that this critical exponddt
—1 is equivalent to the fractal dimensidd? of the tree
skeleton[9], i.e., the backbone of the tree, fbr;=2. This
gives a strong physical meaning to the above rd&dt (6)],
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