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Self-organized criticality can emerge even if the range of interactions is infinite
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We have investigated a model of tree growth in order to show that self-organized criticality~SOC! can
emerge even if perturbations due to long-range interactions are propagating throughout the whole system. The
interaction potential is assumed to be a powerd2a of the distanced measured along the tree between branch
extremities. A transition occurs forac51 according to simulation results between SOC (a.ac) and non-SOC
(a,ac) regimes. A theoretical treatment supports the idea that the transition occurs when the exponenta is
equivalent to the fractal dimensionD f

S of the backbone~skeleton! of the tree.@S1063-651X~98!09101-6#

PACS number~s!: 05.40.1j, 61.43.Hv, 68.35.Rh
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I. INTRODUCTION

Self-organized criticality~SOC! has received much atten
tion since it was proposed to be a paradigm for the desc
tion of a wide variety of dynamical processes@1#. The SOC
behavior is the tendency for large systems composed
many interacting agents to evolve spontaneously toward
critical state. In the latter, the system exhibits long-ran
power-law correlations in space and time while the inter
tions between agents usually take place over a finite ra
like nearest-neighboring columns of sand grains in the B
Tang-Wiesenfeld~BTW! model.@1–3# The SOC behavior is
in contrast with classical phase transitions for which the fi
tuning of an external field~a temperature-like parameter! is
needed for a critical situation. Moreover, a critical state w
self-organization is characterized by an intermittence
‘‘avalanches’’ @4#. Much experimental and numerical ev
dence of SOC has been found: cellular automata, sandp
earthquakes, vortex motion in type-II high-Tc superconduct-
ors, invasion percolation, fractal growth, and interface p
ning @4#.

Recently, we have extended the Bak-Sneppen~BS! model
@5# of SOC to the growth of trees through successive bran
ing events@6#. A random scalar numberf i between zero and
one is associated with each leaf of a tree. Physically,
number is like a bound state in a potential or the degree
stability of the extremity. At each growth step, a branchi
event is supposed to take place on the leaf having the low
f i value, i.e., the least stable. The model is thus driven
so-calledextremal dynamics. The branching event leads t
two offsprings, each receiving a new random potential va
Interactions are introduced in the system by assuming
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each branching event affects thef i ’s of other leaves when
these are separated from the branching point by a dista
di j less than a parameterk having a finite value. The distanc
di j betweeni and j is defined as the minimum number o
segments needed to connect both leaves. The ab
selection-branching perturbation process is repeated a
sired numbert of times.

Each self-organized critical state is characterized by a
of critical exponentsderived from a power-law behavior o
relevant properties as a function of scale, time, or inter
parameterf 2 f c . It has been demonstrated@7# that the finite
k-value tree model does not belong to the SOC universa
class of extremal dynamics models such as invasion pe
lation, BS, sandpiles, and BTW. Indeed, the relationsh
between critical exponents that have been defined@8# for
extremal dynamics models do not hold for SOC tree mod
@7#. This arises from the fact that the SOC tree model g
erates its own fractal structure of dimensionD f in which
perturbations are propagating along the backbone~skeleton!
of dimensionD f

S5D f21 @9#, in contrast to the majority of
SOC models which are defined on a regular and static latt
Another original feature of the SOC tree model is that t
values of the critical exponents depend on the rangek of the
interactions between agents~extremities! @6#.

It is natural to expect some SOC behavior when
agents have a finite range of ‘‘interactions’’ between the
This is certainly true in the Bak-Sneppen co-evolution latt
model since, in this case, some regularity is introduced i
the evolution process and only a limited amount of eleme
are changing at each step. In the case of an infinite rang
interaction, SOC is expected to disappear if there is no pr
ability condition for the way an agent is changing state. T
is the case of the random-neighbor version of the B
Sneppen model which is recognized to be noncritical@17#.
The destruction of SOC in the case of random-neigh
sandpiles has also been reported@3#.

For the SOC tree models, whenk→`, all agents are in-
ic
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teracting. Then allf i ’s are modified at each time step and t
SOC behavior is expected to be completely destroyed@16#.
No pattern should be expected, since there is no mem
effect at all, and all time steps look like the first one. If the
is no order at first, there will never be any order later on. F
a tree, whenk→`, the tree growth reduces to a simple Ed
growth @10# as with a Cayley tree. Notice that such a situ
tion is not artificial since very long-range interactions as w
as a treelike~hierarchical structure! growth are relevant fea
tures for turbulent economic systems, where evidence
power laws as in SOC have been reported@11#. Long-range
interactions are also relevant for the Internet growth
which 1/f noise has been recently reported as well@12#.

Thus, it is of fundamental, theoretical, and practical int
est to investigate whether or not there are conditions for c
served SOC behavioreven if all agents are interacting. In
order to do so, we have investigated the case of a tree~SOC!
whenk→`, i.e., when all agents are interacting. Ingredie
for the emergence of SOC are found, though for a somew
surprisingly simple condition.

II. MODEL

The present study considers the tree model withk5` and
with leaf interactions given by a power law of the distance
the branching node. When a branching event occurs on a
i having the minimum potential valuef i , the process lead
to two new offspring. The ‘‘potential’’ of each offspringm is
supposed to be correlated to the value of the parent by
law

f m← f i1em , ~1!

whereem is a random number in the interval@ f i21,12 f i #.
Moreover, due to the infinite range of the interactions,
potential f j for all leaves j of the tree is assumed to b
updated, following

f j← f j1
e j

di j
a , ~2!

wheree j is a random number belonging to the interval@ f j
21,12 f j #. The f j values are constrained to remain in t
interval @0,1#. The exponenta is the key parameter that i
going to control the propagation of the potential landsca
perturbations along the tree. Fora50, one recovers the tree
SOC model withk5` and for which the SOC behavior i
destroyed. Fora→`, the model reduces to the invasion pe
colation rule of a Cayley tree that exhibits SOC.

The Fisher algorithm@14#, for which each branching nod
is labeled with reference to the label of its ancestor, has b
used in order to speed up simulations. The CPU compu
time increases as a power oft with an exponent close to 3
This value is in contrast to an exponent close to 2 for
previous tree-SOC model@7#. Within a reasonable computa
tion time, it has been difficult to grow trees with more th
104 branching points. Nevertheless, our results of ‘‘sma
trees will be seen to be relevant for the present quest of S
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III. NUMERICAL RESULTS

Starting from a single root with any value of the initia
potential, the distributionn( f ) of potential values for the
leaves is seen to self-organize always towards a steady s
Typical distributionsn( f ) of the f i ’s after t5104 growth
steps are shown in Fig. 1. Three different situations are ill
trated:a50.8, a51.0, anda51.2. The shape of the distri
bution n( f ) is seen to change drastically atac51. Below
ac , the distributionn( f ) seems to be a continuous and i
creasing function between 0 and 1. Aboveac , n( f ) is a
steplike distribution with the great majority of thef i ’s above
a gap or thresholdf c . This means that all branching even
have taken place through leaves havingf i, f c . The thresh-
old is close tof c'0.5 for a.ac . The formation of such a
gap f c in the n( f ) distribution fora.ac leads naturally to
the definition of avalanches@5# as a causally connected s
quence of activity belowf c . It should be noted that the
threshold is of course not well defined numerically fora
'ac due to the necessary finiteness of the simulated tr
For a close toac , it has thus been difficult to measure pr
cisely the distribution of avalanches in order to demonstr
a hypothetical SOC~or change in! behavior. However, evi-
dence of avalanche dynamics as well as criticality can
given about other features of the tree growth as seen be

Figure 2 presents the two-dimensional projection of t
trees fora50.5 anda52.0, respectively. These trees a
made up of 4000 branching nodes; each one is represe
by a dot. The vertical axis represents the distance from
root while the horizontal axis is arbitrary. The grey leve
represent different steps of the growth. The skeleton of e
tree is fora,ac and the trees are found to be dense obje
close to Cayley trees. Aboveac , the trees are fractal objects
thus reflecting a SOC behavior driving the tree growth itse
as in the case of finite range of interactions@6,7#. For a
.ac , the fractal dimension of the trees has been found to
close toD f52, a result that is different from the tree-SO
model of Ref.@6# for which, e.g.,D f51.9260.04 for k52
@7#.

Figure 3 presents a semilog plot of the evolution of t
largest distancedmax from the leaf top to the root of the tree
The a50.5 anda52.0 cases are illustrated. Both cases c

FIG. 1. Distributionn( f ) of f i ’s values for three different val-
ues ofa: 0.8, 1.0, and 1.2.
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be described by successive jumps ofdmax and periods of
stasis. The jumps seen in thedmax time evolution are ava-
lanches at the ‘‘top’’ of the tree, while during the periods
stasis the activity takes place in the ‘‘inner parts’’ of the tre

FIG. 2. The two-dimensional projection of two trees for~a! a
50.5 and~c! a52.0, respectively. These trees are made up of 4
branching nodes, each represented by a dot. The grey levels r
sent different steps of the growth. The vertical axis represen
measure of the distance from the root while the horizontal axis
an arbitrary scale. The skeletons~b! and ~d!, i.e., the backbone, o
both trees~a! and ~c! are also illustrated.

FIG. 3. Log-log plot of the time evolution of the lengthdmax of
the tree. Two different values ofa are illustrated for concise
ness: 0.5 and 2.0.
.

For a50.5,dmax has clearly a logarithmic evolution expres
ing the nonfractality of the tree fora,ac . For a52.0,dmax
increases as a power oft with an exponent12 , expressing that
the tree is fractal with an exponentD f52. Thus, the inves-
tigation of the tree geometry clearly supports the idea o
transition between non-SOC and SOC regimes atac .

We have also investigated the jumps of the branch
activity on the tree, i.e., the~shortest! distancer measured
along the tree between two consecutive growth events.
ure 4 presents in a log-log plot the distributionn(r ) between
successive branching leaves. Three different situations
illustrated: a50.8, a51.0, and a51.2. Below ac , the
distribution of jumps presents a cut off and is smooth
curved in a log-log plot. Moreover, a ‘‘bump’’ appears ne
the cut off. This bump comes from the fact that the distan
between two successive growth events has roughly the
of the tree for a random~Eden-like! tree growth. This bump
disappears fora.ac . Aboveac51, then(r ) distribution is
a power lawn(r );r 2p with an exponentp51.960.1. Such
a power-law behavior is a characteristic of SOC proces
@8#.

IV. DISCUSSION

Let us consider theoretical arguments next. It has b
recalled that whena→`, the model reduces to the invasio
percolation problem of a Cayley tree or to a critical branc
ing process@13# for which f c5 1

2 , D f52, andp52 are exact
values. Whena is finite, a mean-field treatment of the tre
growth problem is possible by distinguishingactiveand in-
active leaves. Let us define anactive leaf i of the tree as one
with f i, f c , while aninactiveone is for f i. f c . In a mean-
field approximation, the modulation of the perturbation r
sults from an average over all leaves such that the evolu
equations read

Nact~ t11!52 f cNact~ t !1p~ f c ,^da&!Ninact~ t !, ~3!

and

0
re-
a
s

FIG. 4. Log-log plot of the distributionn(r ) of distancest mea-
sured along the tree between successive growth events. Three
ferent values ofa are illustrated: 0.8, 1.0, and 1.2.
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Ninact~ t11!52~12 f c!Nact~ t !1@12p~ f c ,^da&!#Ninact~ t !,
~4!

wherep( f c ,^da&) is the probability that an inactive leaf be
comes active at a distance^da& from the latest branching
event. Assuming thatp has a simple formp1 /^da&, one finds
that the number of active leavesNact presents a stationar
solution for p1 /^da&→0. In this case, the gap exists andf c
5 1

2 . Since the probabilityn(d) of finding two points sepa-
rated from a lengthd is proportional to the powerd2D f

whereD f is the dimension of the embedding space~the tree
herein!, one has

^da&5E
0

t1/D f

n~d!dd5t ~a2D f11!/D f . ~5!

Thus, the formation of a gapf c is only possible for (a
2D f11).0 such that a transition takes place at

ac5D f21. ~6!

This mean-field result is in quite good agreement with
numerical results presented above~D f'2 andac'1!. It is
conjectured that the relationship should apply to fractal tr
grown under other branching conditions@9#.

It should be pointed out that this critical exponentD f

21 is equivalent to the fractal dimensionD f
S of the tree

skeleton@9#, i.e., the backbone of the tree, forD f>2. This
gives a strong physical meaning to the above result@Eq. ~6!#,
e

s

since the perturbations are clearly mediating through the
skeleton. The fact that the tree skeleton may play an imp
tant role during the growth is also related to the screening
extremities leading to fractal trees as discussed in Ref.@15#.

V. CONCLUSION

In summary, we have attempted to solve the dilem
concerning SOC conditions when the interaction range
infinite. We have investigated a simple model of tree grow
for which the range of interactions between agents beha
like a power lawd2a of the distance separating the interac
ing agents. We have found that a transition between n
SOC and SOC growth regimes occurs at a critical valueac
51. This value is found to be the fractal dimension of t
tree skeletonD f

S5D f21, i.e., the dimension of the structur
trough in which interactions are mediated.

Note added in proof. An interesting paper to consider wit
respect to the above work is that of Cannas@18#, where it is
shown that the critical properties of one-dimensional Is
models with long range interactions that decay like 1/r a de-
pend much ona, in particular for 1,a<2.
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